
Flexible Execution of Plans with Choice

Patrick R. Conrad and Julie A. Shah and Brian C. Williams
Massachusetts Institute of Technology

Computer Science and Artificial Intelligence Laboratory, MERS
32 Vassar St. Room 32-D224, Cambridge, MA 02139

prconrad@mit.edu, julie a shah@csail.mit.edu, williams@mit.edu

Abstract

Dynamic plan execution strategies allow an au-
tonomous agent to respond to uncertainties while im-
proving robustness and reducing the need for an overly
conservative plan. Executives have improved this ro-
bustness by expanding the types of choices made dy-
namically, such as selecting alternate methods. How-
ever, in methods to date, these additional choices intro-
duce substantial run-time latency. This paper presents a
novel system called Drake that makes steps towards ex-
ecuting an expanded set of choices dynamically without
significant latency.
Drake frames a plan as a Disjunctive Temporal Problem
and executes it with a fast dynamic scheduling algo-
rithm. Prior work demonstrated an efficient technique
for dynamic execution of one special type of DTPs by
using an off-line compilation step to find the possible
consistent choices and compactly record the differences
between them. Drake extends this work to handle a
more general set of choices by recording the minimal
differences between the solutions which are required at
run-time. On randomly generated structured plans with
choice, we show a reduction in the size of the solution
set of over two orders of magnitude, compared to prior
art.

As autonomous systems become more capable and common,
they will need to reason about complex tasks and robustly
execute plans in uncertain environments. In previous work,
Williams et al. introduced the Reactive Model-Based Pro-
gramming Language (RMPL), which is designed to allow
engineers to simply and intuitively express the desired be-
havior of the system (2003). Then the agent’s executive de-
termines the correct sequence of actions to accomplish this
behavior, relieving the programmer of explicitly coding that
logic. RMPL programs often involve temporal constraints
which the executives must reason over.

Kim, Williams, and Abramson previously developed
Temporal Plan Networks (TPNs) as a temporal constraint
language for a subset of these problems (2001). TPNs spec-
ify simple interval constraints, providing an upper and lower
bound on the durations between plan events. However, they
also include choice points, where the executive may choose

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

between different possible threads of execution, which in-
creases the agent’s flexibility in responding to disturbances.
These choices require disjunctive constraints, making the
temporal constraints of TPNs a special case of the Disjunc-
tive Temporal Problem (DTP) (Dechter, Meiri, and Pearl
1991).

Although some instances of temporal networks can be
statically scheduled in advance, this strategy typically leads
to brittle plans since the executive cannot adjust to dis-
turbances. To account for this inflexibility, pre-scheduled
plans are often overly conservative. One effective tech-
nique for handling uncertainty is to follow a strategy of least
commitment and to delay decision making until execution
time, thereby maintaining maximal flexibility to respond
to uncertainty (Muscettola, Morris, and Tsamardinos 1998;
Tsamardinos, Muscettola, and Morris 1998). Previous work
has developed efficient execution strategies for Simple Tem-
poral Problems (STPs), a non-disjunctive temporal network,
by breaking the executive into a dispatcher and a compiler
(Dechter, Meiri, and Pearl 1991; Muscettola, Morris, and
Tsamardinos 1998; Tsamardinos, Muscettola, and Morris
1998). The off-line compiler transforms the network into
dispatchable form, exposing all the implicit constraints in
the original plan. The dispatcher uses the dispatchable form
to quickly make dynamic scheduling decisions.

However, developing flexible executives for plans with
choices, has been more difficult. Kim, Williams, and
Abramson present an executive called Kirk, which uses a
deliberative planning step to change the execution sequence
on-line (2001). Although their results show improvement
over prior planning systems, the latency is still too high for
tightly coupled systems, for example robots working with
humans or walking robots with fast dynamics. Recently,
Shah and Williams extended the compiler and dispatcher
model to Temporal Constraint Satisfaction Problems (TC-
SPs), a type of temporal problems with choice, by com-
pactly recording the possible set of solutions and efficiently
reasoning over the possible options (2008). Their execu-
tive improved upon the response time of previous systems
by reducing the storage and propagation of redundant infor-
mation.

Shah and Williams’ dispatcher represented the full set of
plans by creating a relaxed plan and storing the differences
in the plans based on the choices the executive can make.



This has an intriguing analogy to previous work in Assump-
tion Based Truth Maintenance Systems (ATMSs) (De Kleer
1986). We generalize their algorithm to work with DTPs
by leveraging more ideas from prior ATMS work to record
the minimal differences between the plans required by the
dispatcher. We begin by reviewing temporal networks and
techniques for efficiently dispatching them online. Then
we present our algorithm for to the compiler and the dis-
patcher. Finally, we present empirical results for Drake,
which demonstrates significant reduction in the encoding
of the dispatchable form of DTPs. These encouraging re-
sults suggest that Drake will support fast flexible execution
of plans with choice.

Background
Simple Temporal Problems
Temporal networks are often used to represent temporal con-
straints in planning and scheduling systems. A simple tem-
poral problem is defined as a collection of real-valued time
point variables V corresponding to instantaneous events
(Dechter, Meiri, and Pearl 1991). There is also a collection
of simple interval constraints C of the form

lXY ≤ Y −X ≤ uXY , (1)

where l and u are the lower and upper bound, respectively,
of the time elapsed between the execution of the two events.
There can only be one constraint of this form per pair of time
points X and Y . A solution to an STP is a set of assignments
to the time points that respect all the constraints and a con-
sistent STP is one with at least one solution. Testing for
consistency is typically done by reformulating the problem
as a directed, weighted graph 〈E, V 〉 where each time point
is represented with an edge, and each constraint of the form

Y −X ≤ bXY (2)

is represented by a weighted edge from X to Y with weight
bXY . An STP is consistent iff its associated distance graph
has no negative cycles, which can be checked by computing
the All-Pairs Shortest Path (APSP) graph with the Floyd-
Warshall algorithm in O(n3) time (Dechter, Meiri, and Pearl
1991).

The APSP form of the distance graph is also dispatch-
able, because a dispatcher can make scheduling decisions
on-line while only requiring local propagation to guarantee
a solution (Dechter, Meiri, and Pearl 1991). Since all the
implicit constraints given by the set C are explicitly enu-
merated by the APSP graph, the dispatcher can make as-
signments to the variables without search. During dispatch
the executive tracks execution windows for each event spec-
ifying the constraints on its execution times given the lo-
cal propagation of previous execution times through the dis-
tance graph. At each step of dispatch, the executive finds a
time point whose predecessors have all been executed and
whose execution window includes the current time. Muscet-
tola, Morris, and Tsamardinos show that the APSP contains
redundant information; an edge is said to be dominated by
another edge, meaning that the dominated edge always prop-
agates a looser constraint and therefore is not needed by the

Charge 
[2,3]

Task 
[1,1]

Task 
[1,2]

Charge 
[3,4]

Start [4,5] End

Choice

Figure 1: A TPN of the rover example. Unlabeled arcs rep-
resent [0, 0] constraints.

dispatcher (1998). These redundant edges may be trimmed
after consistency is determined, resulting in a minimal dis-
patchable network.

Temporal Plan Networks
Temporal Plan Networks are a representation of contingent
temporal plans introduced by Kim, Williams, and Abram-
son (2001). TPNs are STPs with the addition of symbolic
constraints and choice nodes. The primitive element in a
TPN is an activity, comprised of two time points connected
by a simple interval constraint. Networks are then created
by hierarchically composing sub-networks or activities in
series, in parallel, or by providing a choice between them.
This hierarchical nature places structural restrictions on the
network, since parallel threads cannot be arbitrarily con-
strained. The symbolic constraints do provide one way to
constrain activities from parallel threads, but we will not dis-
cuss them in detail here.

To illustrate TPNs as plans with choice, we introduce a
simple motivating example, shown in Figure 1. Consider
a rover with a partially charged battery and a task to com-
plete. The ordering changes the durations of these activities
because the battery will take longer to charge if it completes
the task first. The entire sequence must be completed within
four or five hours so that the rover is ready to receive its
next command. The two activity orderings are represented
by creating a choice node between the two serial sequences.
The total duration is enforced by placing the [4, 5] constraint
between the start and end node of the TPN. The choice in the
plan indicates that the rover can decide between the activity
orderings at run-time. Although this flexibility is not obvi-
ously useful in our toy example, choices can be important in
larger plans. This example suggests two tools a programmer
can take advantage of when creating high level specifications
for a system: introducing choice between possible execution
orderings of activities and the ability to select between dif-
ferent simple interval constraints. Drake is designed to take
a TPN as an input and to flexibly schedule the events on-line
consistently with the input plan specifications.



Disjunctive Temporal Problems
Disjunctive temporal problems provide a richer language
than TPNs because they lack the hierarchical structural re-
quirements. DTPs are defined similarly to STPs, but each
constraint Ci ∈ C is allowed to be disjunctive, in the form

ci1 ∨ ci2 ∨ ... ∨ cin, (3)

where n may be any number (Dechter, Meiri, and Pearl
1991). As before, a solution is a set of assignments to each
time point in V while meeting at least one STP constraint
per DTP constraint in C. The disjunctive constraints make
DTPs an expressive formulation, allowing encoding of prob-
lems with choices and resources, to name a few important
capabilities. Most modern approaches for determining con-
sistency for DTPs search for a consistent component STP,
which is the STP induced by selecting a single STP con-
straint from each disjunctive one (Stergiou and Koubarakis
2000; Oddi and Cesta 2000; Tsamardinos and Pollack 2003).
Any solution to a component STP is also a solution to the
DTP.

Tsamardinos, Pollack, and Ganchev presented a flexible
dispatcher for DTPs which first enumerates all consistent
component STPs and then uses them in parallel for deci-
sion making (2001). At run-time, the dispatcher propagates
timing information in all the STPs simultaneously. The dis-
patcher may make scheduling decisions that violate timing
constraints in some of the component STPs as long as it
never removes all the remaining possible plans.

Assumption Based Truth Maintenance Systems
Assumption Based Truth Maintenance Systems (ATMSs)
were introduced by De Kleer as a model based reasoning
system specifically designed to allow the user to quickly
make queries based on different sets of assumptions (1986).
Previous systems would categorize facts as either ”true”
or ”false” by reasoning over the evidence and logical re-
lationships provided. However, new evidence might re-
quire sweeping changes to the model’s understanding of the
world, especially if a key piece of evidence was invalidated.
Additionally, it was previously costly to query the system
with hypothetical questions, e.g. ”if A is true, would X be
true or false?” de Kleer’s innovation was to replace the la-
bels of ”true” and ”false” with the minimum set of assump-
tions necessary for the fact to hold, making it a simple matter
to change the context of a query.

The ATMS architecture uses environments and labels to
represent the support for a fact. Consider a simple universe
with three assumptions, A,B, and C, and two facts X and
Y , presented to an ATMS. An environment is a minimal set
of assumptions required for a fact to hold; for example, if
X is true under any context where A is true, regardless of
the other assumptions, then the set {A} in an environment
under which X holds. A clause is an arbitrary set of as-
sumptions and is said to be subsumed by an environment
if all the assumptions in the environment are present in the
clause, regardless of the presence or absence of any other
assumptions. Therefore, the clause {A,C} is subsumed by
the environment {A}.

Since there may be more than one set of assumptions that
make a fact hold, each fact is given a label, the minimal set
of environments under which it holds. So, if X holds if ei-
ther A or B is true, it is given the label {{A}, {B}}. A
fact holds under any clause subsumed by its label, so de-
termining whether a fact is true under a set of assumptions
only requires checking the label, which can be done quickly.
The labels are kept minimal to make subsumption checking
as quick as possible, meaning that no environments in a la-
bel are allowed to subsume each other. Imagine that Y can
be given the label {{A}, {B}, {A,B}}. The environment
{A,B} is redundant because {A} and B together subsume
every clause {A,B} does, so it should be discarded from
the label of Y . These minimal labels are built up at run-
time as necessary and are the key to the ATMS’s efficiency.
Contradictory sets of assignments are kept in a database of
no-goods for easy identification, since a label cannot specify
that X holds unless C does.

When implementing a minimal label system, care is re-
quired to ensure that performing label operations will not
dominate the computation time (De Kleer 1986; Forbus and
De Kleer 1993). These works use specialized encodings of
the labels, including bit vector representations and tree data
structures optimized for performing subsumption tests. To
avoid obfuscating the core algorithms, we will not discuss
these ideas further here and will simply treat environments
and labels as sets.

The ATMS concept is related to disjunctive temporal
networks because the choices among the disjuncts can be
treated as assumptions. Since different temporal constraints
hold under different choices, the ATMS framework provides
a way to calculate the minimal dependence of the derived
constraints on the possible choices. Drake will use an ATMS
inspired labeling system to compactly record the dispatch-
able form of the DTP.

Fast Dynamic Dispatching of TCSPs
Shah and Williams approached the problem of dispatching
Temporal Constraint Satisfaction Problems, a special case
of DTPs, by removing redundant storage and calculations
performed by Tsamardinos, Pollack, and Ganchev’s algo-
rithm (2008; 2001). Temporal Constraint Satisfaction Prob-
lems (TCSPs) are DTPs with restricted structure, where for
one constraint Ci, every simple interval constraint per DTP
constraint involves the same two variables, so the problems
can only represent choosing different execution bounds for
a given pair of events, but cannot include exchanging a con-
straint on one pair for a constraint on a different pair of time
points. We will discuss the details of solving TCSPs further
because the insights from this algorithm easily extends to
DTPs.

Shah identifies that often the component STPs differ by
only a few constraints, so that the space required to store the
dispatchable representation can be reduced by only keep-
ing the difference between them. The changes are kept as
constraint tightenings on a relaxed plan that are calculated
by Dynamic Back-Propagation Rules introduced by Shah et
al., which only calculate the changes required to maintain
dispatchability (2007). This technique is in the spirit of an



ATMS, although the labels are not minimal. The approach of
explicitly listing the component STPs also requires copying
the events for each STP, which is unnecessary. By removing
these redundancies, Shah et al.’s results show dramatic re-
ductions in the size of the dispatchable TCSP (2008). Their
dispatching algorithm uses the compact encoding to reduce
the execution latencies by several orders of magnitude for
medium sized problems.

Although Shah’s technique exploits the underlying struc-
ture of the TCSP, it does not identify every possible shared
constraint since the labels are not minimal. Since DTPs
have less common structure than TCSPs, a DTP algorithm
would benefit from identifying the shared elements more
completely. Therefore, we present Drake, which generalizes
Shah’s work to DTPs by calculating minimal labels indicat-
ing the set of choices under which a particular constraint is
active. We will first explain Drake’s compilation technique,
then describe the dispatcher, and finally evaluate Drake’s
performance on random problems.

Compilation
Drake’s compilation produces a compact dispatchable form
of the DTP by identifying common elements between the
possible solutions. This process is designed to directly re-
flect the standard STP compilation algorithm except that la-
bels are calculated to distinguish the choices between dif-
ferent constraints. The process is comprised of three steps:
first the DTP is converted to a labeled distance graph. Sec-
ond, the DTP is compiled using a variant of an All-Pairs-
Shortest-Path (APSP) algorithm which reasons over these
labels. Third, redundant edges are trimmed. We begin our
discussion of the compiler by introducing the labeling sys-
tem and then discuss modifications to the standard STP com-
pilation technique.

Converting TPNs to Labeled Distance Graphs
In preparation for Drake’s compilation and dispatch algo-
rithms, input TPNs or DTPs are first converted into distance
graphs augmented with ATMS style labels. To abstract the
choices represented in the labels from the simple intervals in
the disjunctive constraints, we introduce finite domain state
variables. Each disjunctive constraint Ci is represented by
a state variable with one element in the domain correlated
to each of the disjunctive clauses the executive may choose
to enforce. The rover example requires a single variable to
represent the choice between the two execution paths, A,
which has two values in its domain, {1, 2}, where ”1” rep-
resents charging first and ”2” represents performing the task
first. Non-disjunctive constraints, such as the [4, 5], are not
given variables to avoid unnecessary book-keeping. A com-
plete set of state assignments therefore represents a selec-
tion from each of the disjunctive temporal constraints, which
specify a component STP. Choosing A = 1 in the rover ex-
ample leads to a STP consisting of the sub-network where
the rover charges first. A partial set of assignments there-
fore correlates to a family of component STPs that include
all the other possible assignments to other variables. To
quickly reason over the possible consistent choices at run-

time, Drake maintains a list of the consistent full assign-
ments to the variables, S. A solution to a DTP is an as-
signment to each of the time points that satisfies at least one
simple interval constraint per disjunctive constraint. In the
state variable formulation a single assignment to each vari-
able correlates to enforcing exactly one interval constraint
per disjunctive constraint. Although it is sometimes possible
to enforce more than one STP constraint per DTP constraint
in a solution, which correlates to allowing more than one as-
signment to each state variable, doing so creates a more dif-
ficult problem. Therefore, we never consider multiple con-
current assignments to a state variable.

To store the set of possible solutions as compactly as
possible, it is necessary to note that a particular constraint
holds in an entire family of STPs. In the most obvious
case, if a component constraint cij is paired with assign-
ment xi = j, then cij holds in all STPs where xi = j, so
it is only necessary to record it once. The compiler and dis-
patcher use labels with these assignments to identify what
set of choices imply that a particular constraint is active, al-
lowing the constraints for different component STPs to be
stored in a common repository. Now, a constraint holds un-
der a set of choices if its label is consumed by the clause
formed from the assignments associated with those choices.
Although Shah’s compact encoding of the solution uses a
similar idea, the primary contribution of our work is that the
labels are computed to be minimal, allowing an especially
compact representation of the compiled DTP.

To illustrate this process, consider the transformation of
the rover problem from a TPN into a DTP, drawn as a la-
beled distance graph in Figure 2. After creating the state
variable A to represent the choice of activity orderings, we
must convert the temporal constraints. Since a DTP need not
have the hierarchical structure of a TPN, we can collapse
the four nodes on the left connected by [0, 0] arcs (shown
without labels in Figure 1) into a single start node W and
the four nodes on the right into a single end node Z. Non-
disjunctive constraints are added to the graph as usual, i.e.
upper bounds become weighted edges and lower bounds are
negated and placed on edges in the opposite direction, ex-
cept they are also given universal labels. For example, the
plan completion deadline of four to five hours becomes the
two arcs between W and Z, which are given universal labels
(not shown) because those constraints always hold. Each
possible simple interval from the disjunctive constraints are
similarly translated into the distance graph and each is la-
beled with a single environment specifying its correlated as-
signment. Hence, the arcs along WXZ are all given labels
A = 1 and the arcs along WY Z are all given labels A = 2.

The edges Ejk between any pair of vertices j and k are
maintained as an ordered set, so that the edge which holds
under environment e is the one with the lowest weight,
which is the tightest constraint, whose label subsumes e.
This ordering keeps the labels from growing overly com-
plicated when a new edge that has a lower weight does not
totally subsume the label of the old edge. For example, an
edge with weight 1 and label A = 1, B = 1 takes prece-
dence over an edge with weight 5 of label A = 1 without
specifically altering the later one. Additionally, any edge



{A=1},1

{A=1},-1

{A=1},3

{A=1},-2
{A=2},2 {A=2},4

{A=2},-3{A=2},-1

5

-4

{A=1},2

{A=2},4

Start End
Charg

e

Task Char
ge

Task

W

X

Y

Z

Figure 2: The rover example in distance graph form with
state variables. The constraints are shown after the label.
The dashed edges are examples calculated by LABELED-
APSP.

whose label is subsumed by the union of the labels of edges
with lower weights is never actually identified as the edge
corresponding to any clause and may be discarded. In this
small example, any edge with label A = 1 and a weight
higher than 5 would always be replaced by the tighter exist-
ing constraint and is unnecessary. This conversion to labeled
distance graph form compactly represents the constraints of
the plan so that Drake’s compiler can transform it into a
compact dispatchable form.

All-Pairs-Shortest-Path with Labels
The labeling technique allows all the constraints from the
families of STPs to be combined into a single labeled dis-
tance graph. The compilation process needs to (1) expose
the implicit constraints in the DTP to place it in a dispatch-
able form and (2) record the dependence of each derived
constraint on the choices available to the dispatcher. Addi-
tionally, the compilation needs to identify and remove any
inconsistent sets of choices under consideration by the dis-
patcher. The labeled distance graph can be be compiled
and tested for consistency with a simple modification of a
standard STP compilation algorithm. Here, we use a vari-
ant of the Floyd-Warshall All-Pairs Shortest-Paths (APSP)
algorithm called LABELED-APSP since Floyd-Warshall is
the simplest available STP compilation algorithm. Note that
this variant does not have polynomial run-time because there
may be multiple edges between any given pair of nodes
which the algorithm will have to search over.

The modified compilation algorithm LABELED-APSP,
shown in Algorithm 1 keeps the essential framework of the
Floyd-Warshall algorithm, but introduces management of
the labels into the update step in the inner loop in lines 5-
8. Its input is a weighted directed graph with vertices V ,
edges E, and full assignments S as above. Each edge is de-
fined by start and end vertices, a weight, and a label. As
in the Floyd-Warshall algorithm, Labeled-APSP updates the
shortest paths by looking for a route j → i → k that has
lower weight than the existing j → k. GENERATECAN-

Algorithm 1 Labeled APSP Algorithm
1: procedure LABELED-APSP(V,E, S)
2: for i ∈ V do
3: for j, k ∈ V do
4: Cjk ← GenerateCandidates(Eji, Eik, S)
5: if j=k then
6: S ← CheckForNegCycles(Cjk, S)
7: else
8: Ejk ←MergeCandidates(Ejk, Cjk, S)
9: end if

10: end for
11: end for
12: return E,S
13: end procedure

14: procedure GENERATECANDIDATES(Eji, Eik, S)
15: Cjk ← {}
16: for a ∈ Eji do
17: for b ∈ Eik do
18: w ← a.weight + b.weight
19: l← a.label ∩ b.label
20: if l is consistent with S then
21: Cjk ← Cjk ∪ Edge (j, k, w, l)
22: end if
23: end for
24: end for
25: return Cjk

26: end procedure

27: procedure CHECKFORNEGCYCLES(Cjk)
28: for c ∈ Cjk where c.weight < 0 do
29: RemoveFromAllLabels(c.label)
30: S ← S − c.label
31: if S is empty then
32: return inconsistent DTP
33: end if
34: end for
35: return S
36: end procedure

37: procedure MERGECANDIDATES(Ejk, Cjk, S)
38: for c ∈ Cjk do
39: partition Ejk into E≤ and E>

40: l← c.label −
⋃

a E≤,a.label
41: if l is consistent with S then
42: for a ∈ E> do
43: a.label← a.label − l
44: end for
45: Ejk ← E≤ ∪E> ∪Edge (j, k, c.weight, l)
46: end if
47: end for
48: return Ejk

49: end procedure



DIDATES finds the possible candidates Cij by searching for
pairs of edges a, b from Eji and Eik (lines 16-17) that can
form an alternate path. This shortcut’s weight is the sum of
a and b and its label is the intersection of a and b’s labels
(lines 18-19). If the new label l is consistent with the set of
possible assignments S, the edge is created and added to the
set of candidates (lines 20-21).

After generating the candidate edges representing shorter
paths on line 4, LABELED-APSP must use them to update
the graph (lines 5-8). If the candidates are edges that start
and end at the same node, they are used to check consistency.
Recall that negative cycles imply inconsistency in compo-
nent STPs, so if a negative self-loop candidate is found, its
label must be removed from the set of possible full assign-
ments S and from all other edge labels. This process is
performed by CHECKFORNEGCYCLES and effectively re-
moves all component STPs with that negative cycle from
consideration so that the dispatcher can avoid them at run-
time without searching. All other candidates are inserted
into the graph with MERGECANDIDATES on line 8. To in-
sert a candidate c into the ordered list Ejk, first split the
list into two parts: E≤ contains edges with lower or equal
weights and E> holds the edges with higher weights (line
39). To ensure that no tighter constraints exist than c, all en-
vironments subsumed by labels of edges in E≤ are removed
from the label of c (line 40). If c still has a non-empty, con-
sistent label, it is inserted into the list and all environments
subsumed by the modified label are similarly removed from
all edges with higher weights (lines 41-45).

In Figure 2 the distance graph with the rover example is
shown with the two edges derived for the path WZ, shown
with dashed arcs. The edges with weights two and four were
are created by generating candidates using nodes X and Y as
short-cuts, respectively. All three WZ edges remain in the
compiled form, kept ascending in order. Although the uni-
versally labeled five is actually unnecessary, the algorithm
presented would not remove it because none of the lower
weight edges totally subsume its label. Note that no edge is
ever derived for XY because any constraint between those
points requires two concurrent assignments to A, which the
executive does not need to consider, although the executive
may incidentally satisfy both constraints in some executions
as the choices do not need to be mutually exclusive. These
labels are noted as unnecessary and the edges are discarded
immediately when the candidate edges are generated.

The graph resulting from LABELED-APSP is either iden-
tified as inconsistent or is a dispatchable network. To make
a minimal network, the redundant edges are trimmed from
the graph. Trimming is essentially unchanged from the STP
algorithm, except that for an edge a to be dominated by an-
other edge b, the label of a must be subsumed by the label of
b and the third edge of the triangle. Otherwise, b might pro-
vide evidence that a is unnecessary even though b does not
actually hold in all the situations where a does. Since Drake
generates minimal labels for each of the derived constraints
and the graph is then trimmed of redundant edges, the com-
piled dispatchable representation of the DTP is compact, re-
ducing the space required to store the network.

Dispatching the Compact Encoding
The LABELED-APSP algorithm provides Drake with a
compact representation of the DTP, which is dispatchable
with a variant of the standard STP executive. The dispatcher
uses this shared information identified in the compact form
to quickly make scheduling decisions on-line. As with the
compiler, we generalize the standard STP dispatching algo-
rithm to handle the labeled distance graph. Since Drake dis-
patches DTPs, it must dynamically choose execution times
for the events and select among the possible disjuncts. Here
we explain how the standard STP local propagation and
event execution algorithms are modified to work with the
labeled distance graph and the additional choices available.

The STP dispatcher uses execution windows to track the
current restrictions on when future events may be scheduled,
which are updated by propagating the time of event execu-
tions through the constraints in the distance graph. Drake
again modifies these operations by maintaining ordered lists
of the upper and lower bounds with labels. As with the
edges, the lists are sorted to place the tightest constraints
at the beginning of the list. Propagating an execution time
through an edge creates a candidate bound with the same
label as the edge, which is inserted into these lists in essen-
tially the same manner as shown by MERGECANDIDATES
above, except that the partition process is reversed for lower
bounds. This process allows Drake to compactly track the
execution windows for all possible futures without making
copies of the events for each component STP.

Although a solution to a DTP might obey every STP con-
straint in the disjunctive constraints, in general a solution
will only enforce a subset of the disjuncts. Constraints from
different possible solutions are mixed together, so Drake
needs to separate out only a single set of constraints to en-
force. To maintain a least commitment approach at run-time,
Drake begins by considering all possible solutions and se-
lectively removing some choices from the disjuncts to make
progress through the plan, converging to at least a single dis-
junct from each choice that it will enforce. In this way, it is
able to delay commitment until run-time and only use local
search to ensure that the final execution will satisfy the DTP.

For an event to be executed by a dispatcher, it must be
alive and enabled, meaning that all events constrained to
happen before it have already occurred and that the current
time falls within event’s execution window. However, both
of these conditions depend upon the set of constraints the
dispatcher enforces. Drake may execute an event i at the
current time if it can violate all the contradicting constraints:
any upper and lower time bounds excluding the current time
and any edges specifying that non-executed events must oc-
cur before i. These constraints may be violated if there is
an alternative choice of constraints that Drake could still en-
force. Drake checks this condition by testing whether the
full assignments in the set S that are subsumed by the labels
of those constraints can be removed from S and still leave
possible full assignments. This checks whether all the re-
maining possible solutions require enforcing that constraint,
in which case the event cannot be executed. If the event is
executed, then S is pruned of those assignments.

The algorithm for this reasoning is shown in Algorithm



2, which determines the new set of assignments S′ if the
given event e is executed at the current time t. Its inputs are
the event under consideration e, the edges of the graph E,
the set of assignments S, the list of events that have already
been executed Vexec, and the current time t. Lines 3-15 find
all the constraints that preclude the execution of the event
e at the current time and unions their labels to determine
which disjuncts would not be satisfied if the constraints were
broken. Then line 16 determines if there are still available
solutions to the DTP if those disjuncts are not enforced. If
there are, then lines 17-18 return true and the new set of full
assignments pruned of options that become infeasible if e is
actually executed. Otherwise lines 19-20 return false.

Algorithm 2 Event Selection Algorithm
1: procedure EVENTEXECUTABLE?(e,E, S, Vexec, t)
2: l← {}
3: for ub ∈ e.upper bounds, ub.bound < t do
4: l← l ∪ ub.label
5: end for
6: for lb ∈ e.upper bounds, lb.bound > t do
7: l← l ∪ lb.label
8: end for
9: Ee− ← non-positive lower bound edges

10: starting with e
11: for edge ∈ Ee− do
12: if edge.start is not in Vexec then
13: l← l ∪ edge.label
14: end if
15: end for
16: S′ ← S − l
17: if S′ is not empty then
18: return true, S′

19: else
20: return false
21: end if
22: end procedure

To conclude our presentation of Drake’s algorithms, we
explain how the dispatch process works on the compiled
rover example. After compilation, S includes both assign-
ments to A, as both produce consistent STPs. At the first
time step, arbitrarily chosen as t = 0, the start event W is
executed. This propagates through the graph, putting upper
and lower bounds on X and Y with the labels on those paths.
Z will have three upper and lower bounds, one for each as-
signment to A and a third with a universal label because the
compiled form has six total arcs between W and Z. At later
time steps, Drake can choose to schedule either X or Y , but
not both, at an arbitrary time (or elect not to schedule it).
Doing so violates a constraint labeled with A = 1 or A = 2,
respectively, which is allowed if the other assignment’s con-
straints are enforced. At a later time t = 5, Z needs to be
executed to satisfy the global constraint, and Drake may do
so even if X was never scheduled as long as Y was sched-
uled according to the A = 2 constraints. In this case, X does
not need to come before Z because Drake already commit-
ted to neglecting the A = 1 constraints by failing to sched-

2 4 6 8 10 12 14
10

1

10
2

10
3

10
4

10
5

10
6

10
7

Number of Disjunctive Constraints

Sp
ac

e 
U

se
d

 

 

Drake, 2 clauses

STPs, 2 clauses

Drake, 3 clauses

STPs, 3 clauses

Figure 3: The space used by the dispatchable graphs com-
piled with Drake’s method and by listing component STPs
with disjunctive constraints with two and three clauses each.

ule X . Note that once one of the assignments is discarded
when Drake violates a constraint, all the constraints with the
other label become binding to ensure that the execution is
correct. Drake’s dispatcher leverages the compact recording
of the constraints from the labeled compilation algorithm to
perform a smaller number of computations.

Results
We evaluated Drake’s performance on randomly generated
structured problems to characterize the space savings on
realistic problems. The problem generator was based on
Stedl’s random structured STPU generator, which we will
briefly outline (2004). First, a series of activities are laid out
on a coordinate grid with random ordered constraints. Then
constraints are added to nearby events with magnitudes pro-
portional to their separation on the grid, which may be or-
dered or unordered. Finally, local sets of edges are selected
to be the simple intervals in the disjunctive constraints. In
our setup we varied the number of activities in the plan
and used one disjunctive constraint per activity. Plans are
generated with twice the number of events as activities and
roughly four times the constraints as activities, following
previous work that realistic problems are not highly con-
strained (Tsamardinos 2001). Twenty problems are tested
at each size, and the number of simple interval clauses per
disjunctive constraint is varied between two and three.

We compile the random problems using both Drake’s
compilation technique and using Tsamardinos’s approach of
explicitly enumerating all the consistent component STPs
and compared the space requirements (Tsamardinos, Pol-
lack, and Ganchev 2001). The space is counted as the num-
ber of edges plus the number of nodes in the representation.
To represent the costs of the labels Drake stores, we also



count the number of full assignments in S. The results are
shown in Figure 3. Especially on larger problems, Drake
uses much less space than prior art, by two orders of magni-
tude when compared for disjuncts of order two and three.
We also note that for the larger problems tested, roughly
those with 105 or more storage space used, the technique in
prior art is infeasible because all the component STPs could
not fit in memory at the same time.

Discussion
Based on Shah and Williams’ results, we expect that re-
ducing the size of the dispatchable form of the disjunctive
problem will significantly reduce the response time at exe-
cution. Since Drake is a proof of concept implementation, it
did not include several features known to make ATMS sys-
tems perform well, so the execution latency observed in the
dispatcher is still relatively high. However, these results in-
dicate that a more advanced implementation of the labeling
system will yield dramatic reductions in the execution la-
tency (De Kleer 1986). Furthermore, a better labeling sys-
tem will improve the compiler by providing a more compact
version of the solution set S.

As we have tried to emphasize throughout, the elegance
of Drake is that it involves relatively simple modifications
to algorithms for non-disjunctive forms of the temporal
problem to reason efficiently over the shared structure of
the disjunctive problem. This method is effective because
during the compilation process the algorithm directly cal-
culates the dependence of each derived constraint on the
choices in the original plan and is thus able to extract the
minimal number of constraints to represent all the possi-
ble choices. We believe that recent work in efficient STP
reformulation (Tsamardinos, Muscettola, and Morris 1998;
Xu and Choueiry 2003; Planken et al. 2008) may be adapted
to consider labels, thereby creating a more efficient compi-
lation technique than the LABELED-APSP algorithm shown
here, but this is left as future work.

Conclusion
We have presented Drake, a novel system for dynamically
executing temporal plans with choices. By deferring choice
until execution time, autonomous systems can avoid overly
conservative plans and improve robustness by allowing un-
certainty in the world to unfold before making decisions.
Drake takes the plan and reformulates it as a Disjunctive
Temporal Problem, which is then compiled using a variant
of the standard STP compilation algorithm designed to ex-
ploit common structure to compress the dispatchable form
of the plan. Drake shows improvement in the space to store
the solution set by up to two orders of magnitude, which is
an important step towards reducing the execution latency for
the flexible dispatch of these plans.

References
De Kleer, J. 1986. An assumption-based TMS. Artificial
intelligence 28(2):127–162.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49:61–95.

Forbus, K., and De Kleer, J. 1993. Building problem
solvers. MIT press.
Kim, P.; Williams, B.; and Abramson, M. 2001. Execut-
ing reactive, model-based programs through graph-based
temporal planning. In International Joint Conference on
Artificial Intelligence, volume 17, 487–493.
Muscettola, N.; Morris, P.; and Tsamardinos, I. 1998.
Reformulating temporal plans for efficient execution. In
Principles of Knowledge Representation and Reasoning-
International Conference, 444–452.
Oddi, A., and Cesta, A. 2000. Incremental forward check-
ing for the disjunctive temporal problem. In ECAI, 108–
112.
Planken, L.; de Weerdt, M.; van der Krogt, R.; Rintanen,
J.; Nebel, B.; Beck, J.; and Hansen, E. 2008. P 3 C: A New
Algorithm for the Simple Temporal Problem. In Proceed-
ings of the International Conference on Automated Plan-
ning and Scheduling (ICAPS), 256–263. AAAI Press.
Shah, J. A., and Williams, B. C. 2008. Fast Dy-
namic Scheduling of Disjunctive Temporal Constraint Net-
works through Incremental Compilation. In Proceedings of
the International Conference on Automated Planning and
Scheduling.
Shah, J.; Stedl, J.; Williams, B.; and Robertson, P. 2007. A
Fast Incremental Algorithm for Maintaining Dispatchabil-
ity of Partially Controllable Plans.
Stedl, J. 2004. Managing temporal uncertainty under lim-
ited communication: a formal model of tight and loose
team coordination. Master’s thesis, Massachusetts Institute
of Technology.
Stergiou, K., and Koubarakis, M. 2000. Backtracking al-
gorithms for disjunctions of temporal constraints. Artificial
Intelligence 120(1):81–117.
Tsamardinos, I., and Pollack, M. 2003. Efficient solu-
tion techniques for disjunctive temporal reasoning prob-
lems. Artificial Intelligence 151(1):43–89.
Tsamardinos, I.; Muscettola, N.; and Morris, P. 1998. Fast
transformation of temporal plans for efficient execution. In
Proceedings of the National Conference on Artificial Intel-
ligence, 254–261.
Tsamardinos, I.; Pollack, M.; and Ganchev, P. 2001. Flex-
ible dispatch of disjunctive plans. In 6th European Confer-
ence on Planning, 417–422.
Tsamardinos, I. 2001. Constraint-based Temporal Rea-
soning Algorithms with Applications to Planning. Ph.D.
Dissertation, University of Pittsburgh.
Williams, B.; Ingham, M.; Chung, S.; and Elliott, P. 2003.
Model-based programming of intelligent embedded sys-
tems and robotic space explorers. Proceedings of the IEEE
91(1):212–237.
Xu, L., and Choueiry, B. 2003. A new effcient algorithm
for solving the simple temporal problem. In Temporal Rep-
resentation and Reasoning, 2003 and Fourth International
Conference on Temporal Logic. Proceedings. 10th Interna-
tional Symposium on, 210–220.


